1,2-DIHYDROISOQUINOLINES—XII¹ THE REACTION WITH *O*-NITROBENZALDEHYDES

S. F. DYKE, M. SAINSBURY, D. W. BROWN and M. N. PALFREYMAN School of Chemistry and Chemical Engineering, Bath University of Technology,

Bath BA2 7AY, Somerset, England

(Received in the UK 2 May 1969; Accepted for publication 7 July 1969)

Abstract—The reaction between 1,2-dihydroisoquinolines and o-nitrobenzaldehydes has been shown to produce, in low yields, 4-[3-anthranilyl]isoquinolines. A new synthesis of 7H-dibenz[de,g]isoquinoline derivatives is also described.

In part X of this series² we described our results in the study of the interaction of 1,2-dihydroisoquinolines (1, R = H or Me) with a variety of aldehydes to form 4-substituted isoquinolinium salts of the type 2 (R = H or Me). The enamine was prepared either by reduction of isoquinoline salts with LAH, or by the cyclization of benzylaminoacetaldehyde acetals (3). We mentioned that some anomolous results had been obtained when o-nitrobenzaldehydes were used, and we now wish to report on these reactions.

When 2-methyl-1,2-dihydroisoquinoline (1, R = Me) was reacted with 6-nitropiperonal in the presence of 6N HCl under the conditions described previously,² a 22% yield of a quaternary salt was isolated, which analysed for $C_{18}H_{13}N_2O_3Cl$; the expected product, 2 (R = Me, Ar = 2-nitro-4,5-methylenedioxyphenyl), has a molecular formula of $C_{18}H_{15}N_2O_4Cl$. The band at about 1510 cm⁻¹ in the IR spectrum expected for the nitro group was absent. The NMR spectrum (Fig. 1), measured in CF_3CO_2H solution, exhibited one proton singlets at 9·3 ppm and 8·5 ppm, downfield from internal TMS, typical of the C_1 and C_3 H atoms of an isoquino-

linium salt. A two proton singlet at 6·0 ppm and a three proton singlet at 4·6 ppm were readily assigned to the methylenedioxy and N^+ —Me groups respectively.

The absorption expected at about 4·2 ppm for a methylene group at C_4 in structure 2 (R = Me) was absent and, although the total number of aromatic protons required for this structure were present, two one proton singlets at 6·6 ppm and 6·8 ppm were at rather higher field than expected. It is well known that o-nitrobenzaldehydes and o-nitroacetophenones are easily reduced to anthranils, and structure 4 (R,R = CH_2O_2) for the enamine reaction product was an obvious choice. The protons at C_4 and C_7 of 5,6-methylenedioxyanthranil (5) absorb at 6·8 ppm.

Anthranils typically form complexes with $HgCl_2$, and compound $4(R,R = CH_2O_2)$ behaves similarly; a complex is also formed with $SnCl_2$. As expected, sodium borohydride reduces $4(R,R = CH_2O_2)$ to the 1,2-dihydroisoquinoline (6), whose structure follows from analytical and spectral data. The NMR spectrum is reproduced as Fig. II. 2-Methyl-4-(o-nitrobenzoyl)-1,2-dihydroisoquinoline $7(R = NO_2, R' = R'' = H)$,

obtained^{5,6} by the acylation of 1 (R = Me), has been reduced with $SnCl_2/HCl$ to a compound whose analytical and spectral characteristics are in accord with the $SnCl_2$ complex of the anthranil 4 (R = H). A direct correlation between this product and the substance formed from 1 (R = Me) and o-nitrobenzaldehyde is, unfortunately, not possible since the latter gave the expected enamine product 2 (R = Me, Ar = o-nitrophenyl).

Analogous anthranil structures were produced when o-nitrobenzaldehyde, 6-nitropiperonal and 6-nitroveratraldehyde were reacted with some benzylaminoacetals of the type 3 under the conditions² which had been used previously for the formation of 4-benzylisoquinoline derivatives. These results are collected into Tables 1 and 1A.

Several mechanisms are possible for the formation of these 4-[3-anthranilyl]-isoquinolines. 1,2-Dihydroisoquinolines are known to be reducing agents, and it is possible that an anthranil is first formed which then reacts further with more 1,2-dihydroisoquinoline. However, when the anthranil 5 was reacted with 1 (R = Me) under the conditions of the original condensation, only black tars were formed. An alternative mechanism involves the condensation of the aldehyde with the 1,2-dihydroisoquinoline in the usual way⁷ to form 8, which is then further reduced by excess enamine; o-nitrobenzylalcohols are known³ to yield anthranils on reduction. A possible sequence of events is shown in 1 (R = Me) $\rightarrow 9 \rightarrow 4$ (R, $R = CH_2O_2$).

One of our original reasons for attempting the preparation of 4-(o-nitrobenzyl)-

1:
$$R = Me$$

O2N

HO

HO

NMe

NMe

NMe

10

OMe

MeO

OMe

NMe

OMe

NMe

NMe

11

isoquinolines was the intention to develop new routes to the little studied dibenz [de,g] isoquinoline system 10. The first synthesis in this series was achieved by Pschorr, and the derivative 11 has also been described. We have attained our objective by carrying out a Pschorr ring-closure on 12 ($R = NH_2$, R' = H), thus forming the tetracyclic compound 13; subsequent dehydration yielded 14. The structure 14 has been confirmed by an alternative synthesis from the anhydride 15 (Z = 0); treatment of this material with methylamine yielded 15 (Z = NMe), which, on reduc-

TABLE 1. SPECTRA OF 4(3'-ANTHRANILYL)-ISOQUINOLINIUM CHLORIDES

Substitution	UV (Ethanol)	IR (Nujol)					IMR (CF	NMR (CF ₃ CO ₂ H)		
pattern	λ _{mex} (ε) nm	vmax cm -1	$\mathbf{C_{I}}\mathbf{-H}$	C ₃ —H	C _s —H	C,— H	C ₅ —H	Van cm-1 C1-H C3-H C8-H C6-H C5-H C4-H C7-H -OCH2OOCH3	-0c <u>H</u> 20-	-0CH3
6,7,5',6'-Tetramethoxy-	253 (32,880), 320 (16,850)	1615	9:1	8.4	7.5		7:5	6-7, 6-8		4-0
6,7-Dimethoxy-5',6'- methylenedioxy	252 (31,650), 320 (15,680)	1620	06	8.4	7.8		7.8	6.7	5-9	40
7,8-Dimethoxy- 5',6'-methylenedioxy-	260 (27,500), 310 (12,330)	1660, 1620	6:6	8.7		8.2	8.5	6-8, 7-0	6-1	4:3
7-Methoxy-8-hydroxy- 5,6'-methylenedioxy-	233 (33,220), 350 (16,120)	3400, 1620	9.5	8:3		7.8	7.8	6-6, 6-7	5-9	4.1
6,7-Dimethoxy-	247 (24,600), 312 (12,700)	1620	8 .	8.6		:	Broad	Broad absorption ~7.6 [6]	[9]	

TABLE IA. ANALYTICAL DATA OF 4-(3'-ANTHRANILYL)-ISOQUINOLINIUM CHLORIDES

							Analytical results				
Substitution pattern	m.p. (EtOH)	% yield		Found	pa			Requires	ĸ		
			၁	Н	Z	מ	Mol Formula	၁	н	z	ם
6,7,5',6'-Tetramethoxy-	218–219° (yellow needles)	10	59.2	4.9	9.9	æ .:	C20H19N2O5CI	59.5	F:4	3	8 .80
6,7-Dimethoxy-5',6'-methylenedioxy-	222–223° (pale vellow prisms)	18	99-0	4:2	7-0	\$	C19H15N2O5CI	29-0	3:9	7:25	9.5
7,8-Dimethoxy-5',6'- methylenedioxy-	255-257° (yellow prisms)	13	59.1	4:2	7.1	9	$C_{19}H_{15}N_2O_5G$	59-0	3:9	7:25	9.5
7-Methoxy-8-hydroxy- 5'.6'-methylenedioxy-	255-257° (bright vellow needles)	26	57.5	3.7	7.1	ያ	$C_{18}H_{13}N_2O_5G$	57-65	3.5	7:5	9.5
6,7-Dimethoxy-	216–218° (yellow prisms)	ø	61.4	4.2	7:7	101	$C_{17}H_{15}N_2O_3Cl$	61-0	2.	9.3	9.5

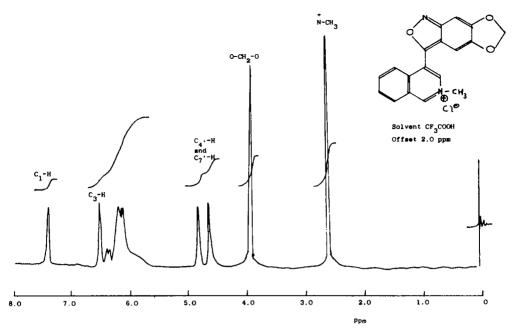


Fig. 1

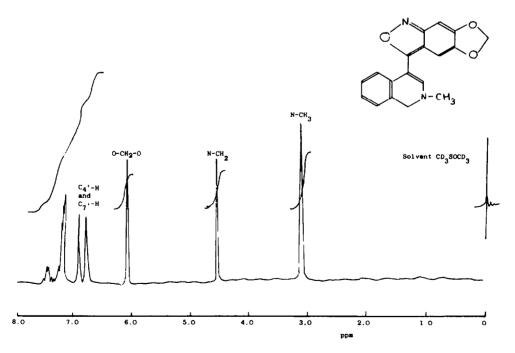


Fig. 2

tion with LAH gave a product, identical (mixed m.p., superimposable IR spectra) with the compound obtained above. The required starting material 12 ($R = NH_2$, R' = H) was easily obtained by first reducing 7 ($R = NO_2$, R' = R'' = H) to 12 ($R = NO_2$, R' = H) with NaBH₄, followed by further reduction with LAH.

We are now developing the synthesis of 7H-dibenz[de,g]isoquinolines, when we hope to examine their chemical, spectral and biological properties.

EXPERIMENTAL

5,6-Methylenedioxyanthranil (5) 6-Nitropiperonal (10 g) was added portionwise to a soln of SnCl₂ (30 g) in concd HCl (75 ml) at 0°. After 2 hr the product was collected by filtration, yield 7·g (84%), m.p. 110-112°: λ_{max} (ε) nm, 310 (1,410): ν_{max} cm⁻¹, 1640 (C=N-), 1600 (C=C). 1200 (—O CH₂ O—); NMR (CD₃SOCD₃) ppm, 9·3 s [1](C₃—H), 6·9 s [1] and 6·7 s [1](C₄—H and C₇—H), 6·0 s [2] (—O CH₂ O—). Formation of mercuric chloride complex was achieved by the addition of mercuric chloride (0·3 g) in EtOH (60 ml) to a soln of the anthranil (0·5 g) in EtOH (30 ml). The solid product recrystallized from EtOH as red needles (0·45 g), m.p. 231-233°, λ_{max} (ε) nm, 310 (4,850) ν_{max} cm⁻¹, 1660 (C=N⁺), 1610 (C=C). NMR (DC1) ppm 9·8 s [1] (C₃—H), 7·5 s [1] and 7·4 s [1] (C₄—H and C₇—H), 6·7 s [2] (—O CH₂ O—). [[Found: C, 21·6; H, 1·4; N, 3·1; Cl, 15·8 C₈H₃NO₃Cl₂Hg requires: C, 22·0; H, 1·1; N, 3·2; Cl, 16·3%]. General preparation of 4-(3'-anthranilyl)isoquinolinium chlorides. The appropriately substituted benzylaminoacetaldehyde dimethyl acetal (5 g) was heated under reflux with the o-nitrobenzaldehyde (molar equiv), EtOH (50 ml) and cone HCl (25 ml); the soln being protected by an atmosphere of N₂. After 30 min, the soln was allowed to cool, when the product anthranil separated. Recrystallization was achieved from EtOH in each case.

4(5',6'-Methylenedioxy-3'-anthranilyl)2-methylisoquinolinium chloride, (4), 2-Methyl-1,2-dihydroiso-1/(5'-M) and cone HCl (25 ml).

4-(5',6'-Methylenedioxy-3'-anthranilyl)2-methylisoquinolinium chloride, (4), 2-Methyl-1,2-dihydroisoquinoline (5.5 g) in ether was added to 6-nitropiperonal (6.7 g) in EtOH (80 ml) and conc HCl (25 ml). After heating, at reflux under N_2 for 4 hrs, the soln was evaporated to small bulk, and cooled. The yellow crystals of product which separated were collected and recrystallized from EtOH, yield 3-1 g (22%), m.p. 246-248°: λ_{max} (ϵ) nm 240 (10,600): ν_{max} cm⁻¹, 1660 (C=N⁺), 1640 (C=N—), 1600 (C=C), 1240 (—O CH₂ O—); NMR (CF₃CO₂H) ppm, 9-3 s [1] (C₁—H), 8-5 s [1] (C₃—H), ~ 8-0 m [4] (aromatic protons), 6-7 broad s [2] (C'₄—H, C'₇—H), 6-0 s [2] (—O CH₂ O—), 4-6 s [3] (N⁺—CH₃). [Found: C, 63-0; H, 3-8; N, 7-8; Cl, 10-9 C₁₈H₁₃N₂O₃Cl requires: C, 63-2; H, 3-8; N, 8-2; Cl 10-5%].

This compound was characterized as the mercuric chloride complex, the yellow product being recrystal-lized from EtOH m.p. 242-244°. [Found: C, 35·5; H, 2·0; N, 4·8; Cl, 17·0 C₁₈H₁₃N₂O₃Cl₃Hg requires: C, 35·3; H, 2·1; N, 4·6; Cl, 17·3%].

4-(5',6'-Methylenedioxy-3'-anthranilyl) 2-methyl-1,2-dihydroisoquinoline, (6). The anthranil (0·8 g) in EtOH (50 ml) was treated with a two molar amount of NaBH₄ (2 g) and the soln heated under reflux for 2 hrs. Water was then added and the mixture extracted several times with CHCl₃. Removal of the solvent from the combined extracts afforded crude 6, which was recrystallized from EtOH as pale yellow prisms 0·7 g (96%), m.p. 190–192°; λ_{max} (ε) nm, 240 (18,000): ν_{max} cm⁻¹, 1655 (C=C), 1620 (C=N—), 1610 (C=C), 1200 (—O CH₂ O—); NMR (CD₃SOCD₃) ppm, 7·4–7·1 complex [5] (aromatic protons); 6·9 s [1] and 6·8 s [1] (C₄—H and C₇—H); 6·1 s [2] (—O CH₂ O—); 3·0 s [3] (N—CH₃). [Found: C, 70·5; H, 4·7; N, 9·2 C₁₈H₁₄N₂O₃ requires: C, 70·6; H, 4·6; N, 9·1%], MW (mass spec) obs. 306, calc. 306. Treatment of 4·(3'-anthranilyl) isoquinolinium chlorides with sodium borohydride. Reaction of the salts with this reagent gave only the corresponding free bases, whose physical and analytical properties are listed

4-(5',6'-Dimethoxy-3'-anthranilyl) 6,7-dimethoxyisoquinoline, m.p. 241-242° (EtOH), λ_{max} (ϵ) nm, 225 (29,860), 350 (11,200): ν_{max} cm⁻¹, 1630 (C=N-), 1600 (C=C); NMR (CDCl₃) ppm, 90 s [1] (C₁-H); 8·7 s [1] (C₃-H); 7·3 s [1] and 7·5 s [1] (C₅-H and C₈-H); 6·7 s [1] and 6·8 s [1] (C₄-H)

and C₇-H); 40 broad s [12] (-O CH₃). [Found: C, 65·2; H, 4·9; N, 7·3 C₂₀H₁₈N₂O₃ requires: C, 65·6; H, 4.95; N, 7.65%.] 4-(5',6'-Methylenedioxy-3'-anthranilyl) 7,8-dimethoxyisoquinoline m.p. 267-269°, $\lambda_{max}(\epsilon)$ nm, 246 (40,000): v_{max} cm⁻¹, 1620 (C=N-), 1615 (C=C); NMR (CF₃CO₂H) ppm, as for parent salt. [Found: C, 65.2; H, 3.9; N, 8.1 C₁₀H₁₄N₂O₅ requires: C, 65.2; H, 40; N, 8.0%] Reduction of 4-(2-nitrobenzovl) 2-methyl-1,2-dihydroisoguinoline (a) The benzoyldihydroisoquinoline (1 g) was reacted with warm SnCl2 aq (5 g) in conc HCl (20 ml). After 2 hr at 100° the soln was allowed to cool and the deep orange ppt of 4-(-3'-anthranilyl) 2-methylisoguinolinium chloride-stannous chloride complex which separated was then collected, and recrystallized from DMSO, yield 35% as yellow plates, m.p. 275–277°; $\lambda_{max}(\epsilon)$ nm, 223 (35,000): ν_{max} cm⁻¹, 1660 (). 1610, 1600 (C=C); NMR (CD₃SOCD₃) ppm, 9·6 s [1] (C₁—H); 8·5-7·0 complex [9] (aromatic protons); 4.4 s [3] (N+-CH₃). [Found: C, 42.2; H, 2.9; N, 6.0; Cl, 22.2 C_{1.7}H₁₃N₂OCl requires: C, 41.9; H, 2.7; N, 5.8; Cl, 21.8%]. (b) The benzoyldihydroisoquinoline was reduced by heating in aqueous EtOH soln with excess NaBH... After 2 hr the soln was cooled, diluted with water and extracted several times with CHCl₃. Removal of the solvent from the combined extracts afforded 12 (R = NO2, R = H) as colourless prisms which was recrystallized from EtOH, yield 23% m.p. 187–189°, λ_{max} (ϵ) nm, 265 (6,000): ν_{max} cm⁻¹, ~3500 (—OH), CC), 1520 (-NO₂); NMR (CDCl₃) ppm, 7.9 m [1] (aromatic proton adjacent to -NO₂ group); 7.5-6.9 m [7] (aromatic protons); 5.8 broad s [2] (-OH and -CHAr); 4.2-2.6 complex [5] (aliphatic protons); 2.5 s [3] (N-CH₃). [Found C, 68·2; H, 6·1; N, 9·2 C_{1.7}H₁₈N₂O₃ requires: C, 68·4; H, 61; N, 94%]. Acetate derivative: colourless needles m.p. 89-91° (EtOH). [Found: C, 673; H, 61; N, 8·1 $C_{19}H_{20}N_2O_4$ requires: C, 67·1; H, 5·9; N, 8·2%.] The above tetrahydro alcohol (3 g) in dry ether (100 ml) was treated with small portions of LAH (total 3 g). After stirring at room temp for 4 hr, the excess reagent was destroyed by the cautious addition of 30% sodium potassium tartrate soln. After filtration the ethereal soln was evaporated to yield 12 ($R = NH_2$, R' = H) as a red oil (2.3 g). This compound was not purified but used directly in subsequent experiments. In a similar experiment to (b) above, 7^6 (R = R" = H, R' = NO₂) gave 30% of 12 (R = H, R' = NO₂) m.p. 197-199° (EtOH); λ_{max} (ϵ) nm 280 (9,200): ν_{max} cm⁻¹, 3200 (—OH) 1600 (C—C), 1510 (—NO₂); NMR (CDCl₃) ppm, 8·2-7·1 complex [8] (aromatic protons); 5·8 broad s [1] (-CH-Ar); 5·4 broad s [1] (—OH, removed by deuteration); 4·2-3·3 q [2], J = 15 H_z (Ar—C—N); 3·5-2·7 complex [3] $(N-CH_2-CH-); 2.55 \text{ s } [3] (N-CH_3). [Found: C, 68.4; H, 5.9; N, 9.2 C_{17}H_{18}N_2O_3 \text{ requires: C, 68.4:}$ H, 6:1; N, 9:4%]. This compound was characterized as the O-acetate by heating with Ac₂O for 30 min at 100°, yield 76%, colourless prisms m.p. 137-139° (EtOH); λ_{max} (ε) nm 272 (7,200): ν_{max} cm⁻¹, 1725 (CH₃CO₂—), 1600 C=C), 1250 (CH₃CO₂-); NMR (CDCl₃) ppm, 8·3-7·1 m [8] (aromatic protons): 6·2 broad s [1] $(-C\underline{H}-Ar)4\cdot 1-3\cdot 0q[2], J = 15H_z(Ar - C \cdot N); 3\cdot 0-2\cdot 4m[3](N-C\underline{H}_2-C\underline{H}-1), 2\cdot 3s[3](N-CH_3);$ 2·0 s [3] (CH₃—CO₂—). [Found: C, 66·9; H, 5·9; N, 8·1 C₁₉H₂₀N₂O₄ requires: C, 67·1; H, 5·9; N, 8·2%.] Pschorr ring closure of 12 (R = NH₂, R' = H). The amine (2.3 g) was dissolved in 2N HCl (140 ml) and diazotized at 0° by the addition of NaNO2 (0.6 g) in ice cold water (50 ml). After 1 hr at 0°, urea (0.2 g) was added followed by Cu powder (2 g). At the end of a further 3 hr the suspension was filtered, basified

with NaOH aq and extracted with CHCl₃ (3 × 30 ml). The combined extracts were dried and evaporated to give 13 as a brown gum, which crystallized on trituration with CHCl₃ as colourless needles (0.55 g), m.p. 176–177° (CHCl₃); λ_{max} (ϵ) nm, 273 (5,000); ν_{max} cm⁻¹, 1610, 1590 (C=C), 3300 (—OH); NMR

Ar (CD₃SOCD₃) ppm, 7·9–7·0 m [7] (aromatic protons); 4·5 broad s [1] (HO—C—H); 3·9–2·7 m [5] (—CH₂—N—CH₂, C₄—H); 2·4 s [3] (—NCH₃). [Found: C, 81·35; H, 7·1; N, 6·0 C₁₇H₁₇NO requires: C, 81·2; H, 6·8; N, 5·6%.]

Dehydration of 13. A soln of the above alcohol (0.5 g) in CHCl₃ (50 ml) was saturated with HCl. Removal of the solvent and basification of the residue gave 14 as a colourless solid (0.3 g), which crystallized from CHCl₃ as small prisms, m.p. 99–101°, λ_{max} (ϵ) nm, 226 (24,000), 258 (60,000), 302 (16,000), λ_{max} cm⁻¹, 1615 (CCC); NMR (CDCl₃) ppm, 8.5 multiplet [2] (C₁—H and C₁₁—H); 7-6-7 multiplet [6] (aromatic

protons); 3.75 s [4] (2 × ($N-CH_2-$); 2.4 s [3] ($N-CH_3$). [Found: C, 87.5; H, 6.5; N, 60 C₁₇H₁₅N requires: C, 87.5; H, 6.5; N, 60], M.W. (mass spec): obs. 233 requires 233.

5-Methyl-4,6-diketodibenz[de,g]isoquinoline (15, Z = NMe). To a warm 30% aqueous soln of MeNH₂ (10 ml) 4,6-diketophenanthro [1,10c-d] pyran⁸ (2 g) was added with stirring. After 30 min the soln was filtered and the solid product recrystallized from MeOH to give 15 (Z = NMe) as colourless cubes (2·1 g) m.p. 221-222° λ_{max} (c) nm 240 (15,000), 265 (12,000), 340 (9,000), ν_{max} cm⁻¹, 1710, 1670; NMR (CDCl₃) ppm, ~8·7 m [4] (C₁—H, C₃—H, C₇—H, C₁₁—H); 3·5 s [3] (NCH₃). [Found: C, 77·8; H, 4·4; N, 5·1 C₁₇H₁₁NO₂ requires: C, 78·1; H, 4·25; N, 5·3%].

5-Methyl-4,6H-dibenz[d,e]anthracene (14) LAH (1.5 g) was added in small portions to a suspension of the above product (0.3 g) in ether (150 ml). After heating under reflux for 48 hr the soln was cooled and excess reagent destroyed by the addition of 30% sodium potassium tartrate soln. After filtration the etherial soln was evaporated to yield 14 as a colourless solid which recrystallized from CHCl₃ as needles (0.17 g) m.p. $99-100^{\circ}$. This compound was identical spectroscopically and chemically with the compound previously obtained from $12 (R = NH_2, R' = H)$.

REFERENCES

- ¹ Part XI. M. Sainsbury, D. W. Brown, S. F. Dyke and G. Hardy, Tetrahedron, 25, 1881 (1969).
- ² D. W. Brown, S. F. Dyke and M. Sainsbury, *Ibid.*, 25, 101 (1969).
- ³ K. H. Wünsch and A. J. Boulton, Advances in Heterocyclic Chemistry (Edited by A. R. Katritzky and A. J. Boulton) Volume 8, p. 303. Academic Press (1967).
- ⁴ D. W. Brown, S. F. Dyke, M. Palfreyman and M. Sainsbury, Tetrahedron Letters 5615 (1968).
- ⁵ M. Sainsbury, S. F. Dyke and A. R. Marshall, Tetrahedron 22, 2445 (1966).
- ⁶ S. F. Dyke, M. Sainsbury, D. W. Brown, M. N. Palfreyman and E. P. Tiley, *Ibid.*, 24, 6703 (1968).
- S. F. Dyke and M. Sainsbury, *Ibid.*, 23, 3171 (1967); M. Sainsbury, S. F. Dyke, D. W. Brown and W. G. D. Lugton, *Ibid.*, 24, 427, (1968).
- ⁸ R. Pschorr, Ber., Dtsch. Chem. Ges. 39, 3106 (1906).
- ⁹ J. W. Cook, G. T. Dickson, D. Ellis and J. D. Loudon, J. Chem. Soc. 1074 (1949).
- ¹⁰ C. W. Shoppee, *Ibid.*, 37 (1933).